Publication / RCMCI
Published Date: 2018/06/21
Published By: Dr Mohammad Reza Ay
Published At: Annals of Nuclear Medicine
Attachment Files:
Published URL: https://pubmed.ncbi.nlm.nih.gov/29931622/

emmati, H., Kamali-Asl, A., Ghafarian, P., Ay, M.R


Abstract
Attenuation correction is known as a necessary step in positron emission tomography (PET) system to have accurate and quantitative activity images. Emission-based method is known as a promising approach for attenuation map estimation on TOF-PET scanners. The proposed method in this study imposes additional histogram-based information as a mixture model prior on the emission-based approach using maximum a posteriori (MAP) framework to improve its performance and make such a nearly segmented attenuation map. To eliminate misclassification of histogram modeling, a Median root prior is incorporated on the proposed approach to reduce the noise between neighbor voxels and encourage spatial smoothness in the reconstructed attenuation map. The joint-MAP optimization is carried out as an iterative approach wherein an alteration of the activity and attenuation updates is followed by a mixture decomposition of the attenuation map histogram. Also, the proposed method can segment attenuation map during the reconstruction. The evaluation of the proposed method on the numerical, simulation and real contexts indicate that the presented method has the potential to be used as a stand-alone method or even combined with other methods for attenuation correction on PET/MR systems.